Mount Carmel Fitness & Health Center

Lewis Center, Ohio

Tarek Birkdar
Mechanical Option
Dr. Treado

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

7100 Graphics Way Lewis Center OH, 43035

129,622 S.F. 3 Stories

\$11,000,000

September 2014 – January 2016

Aquatic Center

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Fitness
Center

Child Care

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Heating/Cooling & Ventilation

Typical RTU Operation Schematic

> [13] Roof Top Units Each supplying anywhere from 2500 – 15000 CFM RTU connected to VAV boxes for reheat purposes

Existing System Riser Diagram

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Roof Top Unit Schedule				Heating Section							
		Supply Air (CFM)	Outside Air (%)	Total MBH	Sensible MBH	EAT/LAT EER		Input MBH	Output MBH	EAT/LAT (F)	
	RTU-1	30000	22.60%	969	555	84/60		1062	850	75/101	
	RTU-2	12000	40.8%	471	335	83.17/60.82	10.3	750	607	41.4/88.5	
	RTU-3	2600	24.2%	88	65	79.85/58.36	12.6	150	120	43/96	
	RTU-4	13000	20.0%	449	345	79/55.12	10.4	850	697	56/105	
	RTU-5	4000	35.5%	144	101	82.1/60.52	12.1	250	203	45/92	
	RTU-6	6400	31.3%	246	188	81.25/56.39	10	400	324	48/95	
System	RTU-7	6400	31.3%	246	188	81.25/56.39	10	400	324	48/95	
	RTU-8	5600	29.6%	200	158	80.93/57.27	11	350	284	49/96	
	RTU-9	15000	32.0%	570	432	81.4/55.7	10.6	850	697	47.6/90	
	RTU-10A	11200	30.0%	396	306	81/59.24	10.3	600	486	49/89.5	
	RTU-11	11200	30.0%	396	306	81/59.24	10.3	600	486	49/89.5	
	RTU-12	3200	39.1%	115	88	82.81/59.23	12.5	250	200	43/101	
	RTU-13	2400	32.7%	88	66	81.54/57.68	12.6	200	160	47/109	

Roof Top Unit Schedule

Tenant Air Co	ning Unit So	Cooli	ng Coil			
		Supply Air (CFM)	CUA Mark	Total MBH	EAT (F)	Configuration
A	CU-1	425	2	18	80	Wall
A	CU-2	425	4	18	80	Wall
A	CU-3	425	6	18	80	Wall
System A	CU-4	425	7	18	80	Wall
A	CU-5	425	8	18	80	Wall
A	CU-6	425	9	18	80	Wall
A	CU-7	425	10	18	80	Wall

Tenant Condensing Unit Schedule							
		Service	МВН				
	CUA-1	ACU-1	18				
	CUA-2	ACU-2	18				
	CUA-3	ACU-3	18				
System	CUA-4	ACU-7	18				
System	CUA-5	ACU-4	18				
	CUA-6	ACU-5	18				
	CUA-7	ACU-6	18				
	CUA-8	CRAC-1	50.4				

Cooling Coil:
Entering Air Temp.

79F (DB) - 84F (DB)
Leaving Air Temp.

55F (DB) - 60F (DB)

Heating Coil:
Entering Air Temp.

42F (DB) - 56F (DB)
Leaving Air Temp.

88F (DB) - 95F (DB)

Mechanical Room
Electrical Room
Telecommunication Room
I.T. Room

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Energy Recovery Ventilator Schedule			Reco	very	Outside Air		Exhaust Air	
Service		Туре	Material	CFM	ESP ("WC)	CFM	ESP ("WC)	
			Wheel	Aluminum	12000	1.3	14000	1.25
System ER		ERV-1 Lockers	Su	mmer Condition	15	Winter Conditions		
			OA - EAT	OA - LAT	EA - EAT	OA - EAT	OA - LAT	EA - EAT
			(DB/WBF)	(DB/WB F)	(DB/WB F)	(DB/WBF)	(DB/WBF)	(DB/WBF)
			95/76	80.4/67.4	75/63	0/-1	51.2/41.4	70/53
				Heating Section				
	ERV-1		Total MBH	Sensible MBH	EAT (DB/WB F)	LAT (DB/WB F)	Input (MBH)	Output (MBH)
			592	390	80.4/67.3	50.9/50.9	1000	800
				OA Filters			EA Filters	
			Type	Merv	Depth	Type	Merv	Depth
			Flat	8	2"	Flat	8	2"

Energy Recovery Ventilator Schedule

Summer Conditions
Entering Air Temp. 95F (DB)
Leaving Air Temp. 81F (DB)
EA: Entering Air Temp.
75F (DB)

Heat Recovery Wheel OA Filters: Flat Merv 8

EA Filters: Flat Merv 8

Exhaust Air: 14,000 CFM Outside Air: 12,000 CFM

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Exhaust Fan Schedule										
Service				CFM	SP ("WC)	OV (FPM)	Tip Speed (FPM)	RPM	Arrangement	Drive
	EF-1	General	Pre	4,180	1.25	1970	6790	1441	Downblast	Belt
	EF-2	General	Pre	2,000	1.25	1357	5741	1462	Downblast	Direct
	EF-3	General	Pre	2,000	1.25	1357	5741	1462	Downblast	Direct
	EF 4	Kitchen	IC	1270	0.75	713	5249	1671	-	Belt
	EF 5	Vest.	IC	1200	0.45	431	3679	937	-	Direct
	EF 6	Vest.	IC	1200	0.45	431	3679	937	-	Direct
	EF 7	Chemical Storage	IC	1000	0.75	٠		2825	-	Direct
Sustam	EF 9	MRI Emergency Exhaust	UPRE	1200	0.5	774	3866	1094	-	Belt
System	EF 10	Medical Elec. Room 1st Floor	IC	500	0.5	200	4466	1706	-	Belt
	EF 11	Wellness Elec. 1st Floor	IC	500	0.5	200	4466	1706	-	Belt
	EF 12	Medical Elec. 2nd Floor	IC	500	0.5	200	4466	1706	-	Belt
	EF 13	Medical Elec. 3rd Floor	IC	500	0.5	200	4466	1706	-	Belt
	EF 14	General	Pre	3400	1.25	1603	6083	1291	Downblast	Belt
	EF 15	Isolation	US	500	1.25	870	7144	1910	-	Belt
	EF 16	Vest.	IC	1200	0.45	431	3679	937	-	Direct
	EF 17	Vest.	IC	600	0.45	736	4390	1677	-	Direct

Exhaust Fan Schedule

Down Blast Centrifugal Exhaust Ventilators

5 Major Exhaust Fans (General Area)

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Monthly
Electric Consumption
Existing System

Monthly Electric Cost Existing System

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Monthly
Nat. Gas Consumption
Existing System

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Monthly
Utility Cost
Existing System

Annual Electricity Consumption Existing System

Building Overview

General Information

Design Team

Existing Mechanical System

Energy Consumption & Emissions

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Annual
System Emissions
Existing System

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Reducing Energy
Consumption

Reducing System
Emissions

Reducing Energy Costs Creating A Central Plant

Proposed Mechanical Depth

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Reducing Energy
Consumption

Reducing System Emissions

Reducing Energy Costs Creating A Central Plant

Proposed Mechanical Depth

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Reducing Energy
Consumption

Reducing System Emissions

Reducing Energy Costs Creating A Central Plant

Proposed Acoustical Breadth

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Conclusion

Reducing Energy
Consumption

Reducing System Emissions

Reducing Energy Costs Creating A Central Plant

Proposed Lighting Breadth

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Cooling & Heating Bore Length Design							
Input	Input						
Short-Grouit Factor	(Fsc)	104	104				
Part-Load Factor	(PLFm)	1	1				
Average Heat Transfer to Ground (Btu/hr)	(qa)	696000	696000				
Block Loads (Btu/hr)	(qlh and qlc)	5292000	4596000				
Resistance of Ground, Annual pulse	(Rga)	0.217	0.217				
Resistance of Ground, Daily pulse	(Rgd)	0.128	0.128				
Resistance of Ground, Monthly pulse	(Rgm)	0.207	0.207				
Resistance of Bore	(Rb)	0.09	0.09				
Undisturbed Ground Temperature (Degrees F)	(tg)	56	56				
Temperature Penalty for Bore Spacing (Degrees F)	(tp)	18	18				
Heat Pump Inlet Temperature (Degrees F)	(twi)	41	81				
Heat Pump Outlet Temperature (Degrees F)	(two)	36	86				
System Power Input (Watts)	(Wcand Wh)	690 59.2	59976				
Required Bore Length	(Lcand Lh)	148149	69621				

Well-Field Bore Length Design

Geothermal System Layout Options

> 148148.9 148148.9

> 148148.9 148148.9

148148.9

148148.9

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth Conclusion

Cooling & Heating Bore Length Design							
Input	Input						
Short-Circuit Factor	(Fsc)	104	104				
Part-Load Factor	(PLFm)	1	1				
Average Heat Transfer to Ground (Btu/hr)	(qa)	696000	696000				
Block Loads (Btu/hr)	(qlh and qlc)	5292000	4596000				
Resistance of Ground, Annual pulse	(Rga)	0.217	0.217				
Resistance of Ground, Daily pulse	(Rgd)	0.128	0.128				
Resistance of Ground, Monthly pulse	(Rgm)	0.207	0.207				
Resistance of Bore	(Rb)	0.09	0.09				
Undisturbed Ground Temperature (Degrees F)	(tg)	56	56				
Temperature Penalty for Bore Spacing (Degrees F)	(tp)	18	18				
Heat Pump Inlet Temperature (Degrees F)	(twi)	41	81				
Heat Pump Outlet Temperature (Degrees F)	(two)	36	86				
System Power Input (Watts)	(Wcand Wh)	690 59.2	59976				
Required Bore Length	(Lcand Lh)	148149	69621				

Well-Field Bore Length Design

Geothermal System Layout Options

148148.9

148148.9

148148.9

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Calculating Pressure Loss - Equivalent Pipe Length Method Section Equivalent System Length of Number of Pressure Length Component Components Components Loss (ftH2O) 128.87 90 deg Elbows 2.7 16.2 **Straight Pipe** 807 128.87 26.2 Total

Pump Head Loss Calculation

Geothermal
System Equipment
Selection

Bell & Gossett 1750 RPM Pumps

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Calculating Pressure Loss - Equivalent Pipe Length Method Section Equivalent System Length of Number of Pressure Length Component Components Components Loss (ftH2O) 128.87 90 deg Elbows 2.7 **Straight Pipe** 807 128.87 26.2 Total

Pump Head Loss Calculation

Geothermal System Equipment Selection

Main Pump Selection – Series E1510

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Calculating Pressure Loss - Equivalent Pipe Length Method Section Equivalent System Length of Number of Pressure Component Components Components Loss (ftH2O) 128.87 90 deg Elbows 807 2.7 13.5 **Straight Pipe** 45 deg Elbow 807 128.87 Total 23.1

Pump Head Loss Calculation

Geothermal
System Equipment
Selection

Bell & Gossett 1750 RPM Pumps

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Calculating Pressure Loss - Equivalent Pipe Length Method Section Equivalent System Length of Number of Pressure Component Components Components Loss (ftH2O) 128.87 90 deg Elbows 807 2.7 13.5 **Straight Pipe** 45 deg Elbow 807 128.87 Total 23.1

Pump Head Loss Calculation

Geothermal
System Equipment
Selection

Distributor Pump Selection – Series E1510

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Alternative 1: Roof Top Unit WSHP

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Energy Efficient
Cooling & Heating by
Reversing Refrigerant
Flow

Eliminating the Need of Individual Heat Pumps

Combine Energy
Savings from VAV
& WSHP
Configuration

[3] RN – 140 [1] RN – 30 Units Allow for 100% OA

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Alternative 2: DOAS + Heat Pumps

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Placement of Heat Pumps Will Be Based On Occupancy Type

DOAS
Preconditioning
OA

DOAS Mainly To Supply 100% OA

DOAS Will
Dehumidify The
Air Lowering DB

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

DOAS Equipment Sizing

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

DOAS Equipment Sizing

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

DOAS Equipment Sizing

 $Q_T = 4.5(25821)(38.7 - 24.9)$

133.6

Tons

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Heat Pump Schedule

Heat Pump Schedule								
Ocupancy Type	Location	Capacity Required (tons)	Specified Heat Pumps					
Operating Rooms	1st Floor West	27.45	(1) 20 ton (1) 10 ton					
Examination Rooms		23	(1) 20 ton (1) 5 ton					
	2nd Floor West	117	(6) 20 ton					
Nuræ Station		10	(1) 10 ton					
Treatment Rooms	1st Floor West	25	(1) 20 ton (1) 5 ton					
Shared Waiting Room	2nd Floor West	9	(1) 10 ton					
Conference		8	(2) 5 ton					
Retail		6.6	(1) 10 ton					
Dining	1st Floor Center	18	(2) 10 ton					
Offices		2	(1) 5 ton					
Laundry/Storage		10	(1) 10 ton					
Pools		60	(3) 20 ton					
ockers/Bathrooms(Male)		6	(3) 2 ton					
kers/Bathrooms(Female)	1st Floor East	7.5	(1) 10 ton					
Lockers (Kids)	a i looi Laa	6	(1) 5 ton					
Lockers (Nius)		0	(1) 2 ton					
Equipment Room		5	(1) 5 ton					
	2nd Floor Center	60	(6) 10 ton					
ılth Center/ Aerobic Rooms	2nf Floor East	94	(2) 20 ton (5) 10 ton					
			(1) 5 ton					

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Energy Consumption Comparison

Annual Energy Cost Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Monthly Electric Consumption Comparison

Monthly
Electric Cost
Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Monthly
Nat. Gas Consumption
Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Monthly
Utility Cost
Comparison

SAVINGS

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Energy Consumption Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Energy Consumption Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Energy Consumption Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Energy Cost Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Energy Cost Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Energy Cost Comparison

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Annual Emissions Comparison

	Differen	ce in Total Annual Emiss	sions	
System	Pollutant	Total Emissions (lb/yr)		
Existing System	CO2	3298500		(%)
	SO2	50		
	NOX	13		
	CO2	2152428	Percent Decrease	35
Geothermal + RTU WSHP Design	SO2	33		34
	NOX	8.3		36
Geothermal + DOAS Design	CO2	2668249		19
	SO2	40.8		18
	NOX	10.2		22

Difference in Total Annual Emissions

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth Conclusion

Existing System							
Unit	Takeoff Quantity	Total Cost/Unit (\$)		Total Amount			
RTU - 1	15000	CFM		\$	65,700.00		
RTU - 2	13000 CFM			\$	56,940.00		
RTU - 3	15000	15000 CFM		\$	65,700.00		
RTU - 4	11200	CFM	4.38	\$	49,056.00		
RTU - 5	11200	CFM	4.36	\$	49,056.00		
RTU - 6	25000	CFM		\$	109,500.00		
RTU - 7	33000	CFM		\$	144,540.00		
RTU - 8	35000	CFM		\$	153,300.00		
Ductwork, Insulation, and air devices	122016	SF	4.12	\$	502,705.92		
Ductless Split System @ Elevators	2	Each	14222	\$	28,444.00		
Air Curtains	4	Each	10122	\$	40,488.00		
Exhaust Fans	5	Each	6112	\$	30,560.00		
Temperature Controls	122016	SF	4.63	\$	564,934.08		
Natural Gas Piping	122016	SF	0.85	\$	103,713.60		
HVAC Total					1,964,637.60		

Systems
Cost
Analysis

Alternative 1 Geothermal +RTU WSHP Design Cost Cost/Unit Takeoff Quantity Unit Total Amount 26000 RTU - 1 CFM. 77.480.00 26000 CFM RTU - 2 77,480.00 RTU - 3 26000 CFM. 77,480.00 ŒМ 8500 RTU - 4 25,330.00 Ductwork. 122016 239,15136 Insulation, and air deviœs Geothermal Cost 122016 1571566.08 12.88 +Installation E-1510 5A Water Each 5,788.00 2894 Pumps 4285 8,570.00 Exhaust Fans Each HVACTotal 2,082,845.44

Existing System 1st
Cost

Alternative 1 1st

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth Conclusion

Existing System Unit Takeoff Quantity Total Cost/Unit (\$) RTU - 1 15000 CFM \$ RTU - 2 13000 CFM \$	Total Amount 65,700.00 56,940.00
Unit Takeoff Quantity Cost/Unit (\$) RTU - 1 15000 CFM \$	65,700.00 56,940.00
	56,940.00
DTI 2 12000 CEM	
RTU - 3 15000 CFM \$	65,700.00
RTU - 4 11200 CFM \$	49,056.00
RTU - 5 11200 CFM \$	49,056.00
RTU - 6 25000 CFM \$	109,500.00
RTU - 7 33000 CFM \$	144,540.00
RTU - 8 35000 CFM \$	153,300.00
Ductwork, Insulation, and air devices SF 4.12 \$	502,705.92
Ductless Split System @ 2 Each 14222 \$ Elevators	28,444.00
Air Curtains 4 Each 10122 \$	40,488.00
Exhaust Fans 5 Each 6112 \$	30,560.00
Temperature Controls 122016 SF 4.63 \$	564,934.08
Natural Gas Piping 122016 SF 0.85 \$	103,713.60
HVAC Total \$	1,964,637.60

Systems
Cost
Analysis

Alternative 2: Geothermal +DOASDesign Cost							
Unit	Takeoff Quantity		Total Cost/Unit (\$)		Total Amount		
DOAS- 1	15000	CFM	2.13	\$	31,950.00		
DOAS- 2	15000	CFM	Ζ. υ	\$	31,950.00		
WSHP (5 ton)	8	Each	2490	\$	19,920.00		
WSHP (10 ton)	19	Each	3652	\$	69,388.00		
NSHP (20 ton)	14	Each	6588	\$	92,232.00		
Ductwork, sulation, and air deviœs	122016	Ь	196	\$	239,15136		
Seothermal Cost +Installation	122016	Ь	12.88	\$	1,571,566.08		
-1510 5A Water Pumps	2	Each	2894	\$	5,788.00		
Exhaust Fans	3	Each	4285	\$	12,855.00		
				\$			
HVACTotal					2,074,800.44		

Existing System 1st
Cost

Alternative 2 1st

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth

Conclusion

Systems Cost Comparison

Cost Comparison								
Existing System	\$	1,964,638		\$	118,208			
Alternative 1	\$	2,082,845	Cost Difference	Ψ 				
Alternative 2	\$	2,074,800		\$	10,163			

Building Overview

Proposal & Goals

Mechanical Depth

Geothermal Closed Loop System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Energy Consumption & Emissions

Cost Analysis

Acoustical Breadth Conclusion Systems
Payback
Period

System Payback Period							
System		1st Cost	Annual Operation Cost	Payback Period			
Exisiting System	\$	1,964,637.60	\$ 95,343.00	17			
Alternative 1	\$	2,082,845.44	\$ 88,273.00	"			

Alternative 1: Roof Top Unit WSHP

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Existing System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Conclusion

Noise
Background
Level Study

Equipment
Sound Pressure
Levels

Equipment Sound Pressure Levels								
Equipment Type	63	125	250	500	1000	2000	4000	
Existing System RTU - 13	87	85	85	85	82	78	75	
RTU WSHP	88	84	83	86	83	77	76	
DOAS- 1	85	82	82	81	79	71	70	
Heat Pump - 3	77	69	66	68	57	53	51	

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Existing System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Conclusion

Existing
System
RTU - 13

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Existing System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Conclusion

Alternative 1:
Roof Top Unit
WSHP

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Existing System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Conclusion

Alternative 2: DOAS + Heat Pumps

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Existing System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Conclusion

Alternative 2: DOAS + Heat Pumps

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Existing System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Conclusion

Conclusion

Building Overview

Proposal & Goals

Mechanical Depth

Acoustical Breadth

Existing System

Alternative 1: RTU WSHP

Alternative 2: DOAS + Heat Pumps

Conclusion

Moses D. F. Ling
Dr. James D. Freihaut
Dr. Stephen Treado

Frank A. Eisenhower (Vice President of Karpinski Engineering)

Friends

Family

Acknowledgements